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Virus shapes and buckling transitions in spherical shells
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We show that the icosahedral packings of protein capsomeres proposed by Caspar and Klug for spherical
viruses become unstable to faceting for sufficiently large virus size, in analogy with the buckling instability of
disclinations in two-dimensional crystals. Our model, based on the nonlinear physics of thin elastic shells,
produces excellent one-parameter fits in real space to the full three-dimensional shape of large spherical
viruses. The faceted shape depends only on the dimensionless Foppl–von Ka´rmán numberg5YR2/k, where
Y is the two-dimensional Young’s modulus of the protein shell,k is its bending rigidity, andR is the mean virus
radius. The shape can be parametrized more quantitatively in terms of a spherical harmonic expansion. We also
investigate elastic shell theory for extremely largeg, 103,g,108, and find results applicable to icosahedral
shapes of large vesicles studied with freeze fracture and electron microscopy.
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I. INTRODUCTION

Understanding virus structures is a rich and challeng
problem@1#, with a wealth of new information now becom
ing available. Although traditional x-ray crystallography st
allows the most detailed analysis@2#, three-dimensional re
constructions of icosahedral viruses from cryoelectron
crographs are now becoming routine@3#. Electron micro-
scope images of many identical viruses in a variety
orientations are used to reconstruct a three-dimensional
age on a computer, similar to CT~computed tomography!
scans in medical imaging. There are now, in addition, be
tiful single-molecule experiments which measure the w
needed to load a virus~bacteriophagef29) with its DNA
package@4#. The aim of this paper is to explore the elas
parameters and physical ideas which determine the shap
viruses with an icosahedral symmetry, using the theory
thin elastic shells@5#.

The analysis of approximately spherical viruses da
back to pioneering work by Crick and Watson in 1956@6#,
who argued that the small size of the viral genome requ
identical structural units packed together with an icosahe
symmetry. These principles were put on a firm basis by C
par and Klug in 1962@7#, who showed how the proteins in
viral shell ~the ‘‘capsid’’! could be viewed as icosadeltah
dral triangulations of the sphere by a set of pentavalent
hexavalent morphological units~‘‘capsomers’’!. The viral
shells~there can also be an outer envelope composed of
ditional proteins and membrane elements from the host c!
are characterized by a pair of integers (h,k) such that the
number of morphological units isN510(h21hk1k2)12.
To get from one pentavalent capsomer to another, one m
h capsomers along a row of nearest-neighbor bonds on
sphere, turns 120°, and moves anotherk steps. Euler’s theo-
rem relating the number of vertices, edges, and faces
1063-651X/2003/68~5!/051910~10!/$20.00 68 0519
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spherical triangulation insures that the number of capsom
in fivefold environments is exactly 12@8#. A simple icosahe-
dron of 12 morphological units corresponds to~1,0! while
soccer balls and C60 fullerene molecules are~1,1! structures
with N532 polygons. A~3,1! icosadeltahedronN5132 is
shown in Fig. 1. The polyoma virus~SV40! is a ~2,1! struc-
ture with 72 capsomeres, while the much larger adenov
and herpes simplex virus are~5,0! and ~4,0! structures with
252 and 162 morphological units, respectively. Structu
like that in Fig. 1 withh andk nonzero andhÞk are chiral.

Note that the relatively small polyoma virus~diameter
440 Å! is round@see Fig. 2~a!#, while the much larger herpe
simplex virus~diameter 1450 Å! has a more angular or fac
eted shape@9# @see Fig. 2~b!#. Faceting of large viruses is in
fact a common phenomenon; the protein subunits of differ
viruses, moreover, are very similar~see below!. If these pro-

FIG. 1. A right-handed~3,1! triangulated net~icosadeltahedron!
used to describe virus structure. The~1,3! structure is left handed.
©2003 The American Physical Society10-1
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tein assemblies are characterized by elastic constants a
bending rigidity @5#, we can ask how deviations from
spherical shape develop with increasing virus radius, wh
scales roughly as the square root of the number of morp
logical units.

In support of the idea that viruses with different over
capsid size are composed of nearly identical monomers
note that most viral coat and capsid proteins have about
same size, molecular weight, amino acid composition, a
most importantly, the same folded structure in three dim
sions@10#. It is known, moreover, that protein structure d
termines the mechanical properties of proteins@11,12#.
Hence, the similarity of the protein structure of the co
capsid proteins suggests similar mechanical properties
addition, the presence of the same fold of capsid protein
unrelated viruses~bacterial phages, plant viruses, insect
ruses, and animal viruses! indicate that the fold and its me
chanical properties are conserved in evolution and could
essential for proper virus assembly.

In this paper, we argue that the faceting of large viruse
caused by a buckling transition associated with the 12
lated points of fivefold symmetry. These singularities can
viewed as disclinations in an otherwise six-coordinated m
dium. It is well known that the large strains associated w
an isolated disclination in aflat disk spanned by a triangula
lattice leads to buckling into a conical shape for@13,14#

YR2/k>154, ~1!

whereY is the two-dimensional Young’s modulus,k is the
bending rigidity, andR is the disk radius. The energy of
single fivefold disclination with ‘‘charge’’s52p/6 centered
in a flat array of proteins of sizeR is approximately

E5'
1

32p
s2YR2. ~2!

However, above a critical buckling radiusRb'A154k/Y,
there is a conical deformation~see Fig. 3! such that the dis-
clination energy now only grows logarithmically withR

E5'~p/3!k ln~R/Rb!1
1

32p
s2YRb

2 . ~3!

FIG. 2. The polyoma virus~a! is approximately spherical, while
the larger adenovirus~b! is more faceted~not to scale!. Images from
Ref. @9#.
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One might expect a similar phenomenon for 12 disclinatio
confined to a surface with asphericaltopology. Indeed, the
elastic energy for 12 disclinations on an undeformed sph
of radiusR has a form similar to Eq.~2!, namely@15#,

E'0.604~s2YR2/4p!, ~4!

where the sphere radiusR now plays the role of the system
size. Although it seems highly likely that these 12 disclin
tions can lower their energy by buckling for largeR, the
nonlinear nature of the underlying elastic theory@5# leads to
complex interactions between the resulting conical deform
tions. A boundary layer analysis of the von Ka´rmán equa-
tions for bent plates predicts anomalous scaling for the m
curvature in the vicinity of the ridges connecting conic
singularities@16,17#. Interesting scaling behavior also aris
in the vicinity of the apexes of the cones themselves@18#.
Another interesting physical realization of the buckling pro
lem lies in the faceting of lecithin vesicles at temperatu
sufficiently low so that the lipid constituents have cryst
lized @19,20#.

In this paper, we study the ground states of crystall
particle arrays with 12 disclinations in a spherical geome
We find that there are indeed striking manifestations of
buckling transition even in the curved geometry of vir
capsids or crystalline vesicles. The nonlinear Foppl-v
Kármán equations for thin shells with elasticity and a ben
ing energy are solved using a floating mesh discretiza
developed and studied extensively in the context of ‘‘tethe
surface’’ models of polymerized membranes@21#. By taking
the nodes of the mesh to coincide with the capsomers, e
small viruses can be handled in this way, although any bu
ling transition will surely be smeared out unlessRb /a is
large, wherea is the spacing between these morphologi
units. Ideas from continuum elastic theory will, of course,
most applicable for vesicles composed of many lipids and
large viruses—Viruses with as many as 1692 morpholog
units have been reported@22#.

There may be inherent limitations on the size of vir
capsids that follow from the elastic properties of thin she
Because larger viruses can accommodate more genetic
terial, large sizes could confer an evolutionary advantage
however, large viruses buckle away from a spherical sha

FIG. 3. The fivefold disclination in a triangular lattice. In v
ruses, the points would correspond to capsomeres, while in lec
vesicles they correspond to lipid molecules. The highly strained
space configuration is shown in~a!. The buckled form which arises
for g>154 is shown in~b!.
0-2
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the resistance of the capsid to mechanical deformation
degrade. As we shall see, a theory of buckled crystal
order on spheres also allows estimates of important ma
scopic elastic parameters of the capsid shell from struct
data on the shape anisotropy. Estimates of quantities suc
the bending rigidity and Young’s modulus of a empty vir
shell might allow an understanding of deformations due
loading with DNA or RNA @4#. Although some aspects o
virus structure may be accounted for by the physics of s
theory, we should emphasize that other features could
driven by the need for cell recognition, avoidance of immu
response, etc.

A summary of our investigations of buckling transitions
a spherical geometry~discussed in detail in Sec. II! is shown
in Fig. 4. As illustrated in Fig. 4~see also Fig. 5! icosahedral
shells do indeed become aspherical as the ‘‘Foppl-
Kármán number’’g5YR2/k increases from values of orde
unity to YR2/k@1. The mean square ‘‘asphericity’’~devia-
tion from a perfect spherical shape! departs significantly
from zero whenYR2/k exceeds 154, the location of th
buckling transition in flat space@13#. Fits of buckled viruses
or crystalline vesicles to this universal curve would allow
experimental determination of the ratioY/k. More quantita-
tive information on the buckled shape can be obtained
expanding the radiusR(u,f) in spherical harmonics,

R~u,f!5 (
,50

`

(
m52,

,

Q,mY,m~u,f!, ~5!

and studying the rotationally invariant quadratic invaria
allowed for viruses or vesicles with icosahedral symme
namely,

Q̂,5A 1

2,11 (
m52,

,

uQ,mu2/Q00 ~6!

FIG. 4. Mean-square asphericity as a function ofYR2/k for
many different icosahedral shells. The inset shows a~6,6! structure
with Foppl-von Kármán numberg5YR2/k'400. The arrow marks
the location of the buckling transition in flat space.
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with ,50,6,10,12,16,18, . . . @23#. Although any parameter
set of the form$Q̂6 ,Q̂10,Q̂12, . . . % could be consistent with
an icosahedral symmetry, all buckled objects describable
the theory of elastic shells in fact lie on a universal cur
parametrized by the value ofYR2/k. Deviations from this
curve would presumably describe biological features such
the protrusions of the adenovirus in Fig. 2.

In Sec. II, we describe our theoretical results for disclin
tion buckling in the icosadeltahedral spherical shells p
posed by Caspar and Klug as models of viruses@7#. The
energy, mean-square aspherity, and spherical harmonic
tent of these shells are determined as a function of the Fo
von Kármán number, discussed above,

g5YR2/k. ~7!

Most viruses have either Foppl-von Ka´rmán numberg&150
~implying a close to spherical shape! or 200&g&1500 ~no-
ticeably buckled!. Higher von Kármán numbers describing
objects with very sharp corners cannot be obtained for
ruses withR&0.2 mm composed of finite size proteins. O
course, very high von Ka´rmán numbersare possible for
spherical vesicles with crystalline order composed of mu
smaller lipid molecules@19,20#.

We have studied the scaling of the curvatureC at the
creases formed after the shells buckle for largeg. We even-
tually recover the scaling proposed and studied in other
ometries by Lobkovsky, Witten, and collaborators@16,17#,
but only for very largeg, g>107, appropriate for the buck-
led icosahedral vesicles described in Ref.@20#.

In Sec. III, we discuss briefly the relevance of our work
icosahedral viruses from the library of those whose structu

FIG. 5. Numerically calculated shapes with (h,k) indices~2,2!,

~4,4!, ~6,6!, and ~8,8! for fixed k̃50.25 and fixed spring constan
e51. The Foppl-von Ka´rmán numbers for these shapes areg'45,
176, 393, and 694.
0-3
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LIDMAR, MIRNY, AND NELSON PHYSICAL REVIEW E 68, 051910 ~2003!
have been determined by diffraction methods or by cry
electron microscopy@1–3,9#. For viruses large enough t
buckle, the model seems to account well for the deviat
from the spherical shape using the single adjustable par
eterg. These fits in turn provide information about the ra
Y/k of the Young’s modulus to the bending rigidity. We als
discuss the possible relevance of spontaneous curva
terms and outward pressure induced by packaged DNA
RNA in this section. See Ref.@24# for a discussion of similar
issues for the shapes of liquid membranes with a sphe
topology.

II. DEFECTS ON CURVED SURFACES

Topological defects play a very important role in cryst
line matter. A particularly common type of defect, the dis
cation, is largely responsible for the strength of materia
and in two-dimensional systems the unbinding of dislo
tions may drive the crystal into a hexatic phase@25#. Discli-
nations, on the other hand, are much less common in
crystalline phase because of their very large energy. In qu
two-dimensional curved surfaces, however, the situation m
be quite different. The Gaussian curvature of the surface
‘‘screen’’ out the strain around the defect and thus lower
energy. Moreover, when a crystalline surface is bent to fo
a closed surface with spherical topology, defects are ne
sarily introduced into the lattice. For a triangular lattice on
sphere the number of disclinations has to be at least 12. M
generally, the differenceN52N7 between the number o
fivefold disclinations and the number of sevenfold disclin
tions ~assuming defects with coordination numbers ot
than 5, 6, or 7 are absent! is precisely six times the Eule
characteristicx of the triangulated surface, i.e.,N52N7
56x512(12g), where g is the genus or number o
handles. Thus for shapes such thatg50 ~the sphere! and
torii with extra handles (g>2), the ground state must nec
essarily contain disclinations.~A simple torus has genusg
51, so there is no topological necessity for defects.!

In this section we study closed surfaces of spherical
pology. The 12 disclinations present in the crystalline latt
structure can be expected to dominate the energetics an
fect the overall shape of the structure. The repulsive inte
tion between the 12 disclinations will favor an arrangem
which maximizes their separation. Absent an instability
ward grain boundaries@15#, this leads to a configuration with
icosahedral symmetry, where the disclinations sit at the
tices. We show below that, as a result of competition
tween strain and bending energies, these structures may
dergo a bucklinglike transition~smeared by finite size
effects! from a smooth round shape to a sharply face
shape as the size or elastic constants are varied.

A. Disclination buckling on spheres

We assume a thin shell described by a continuum ela
theory, with energyH5Hs1Hb @5#, including both an in-
plane stretching energy

Hs5
1

2E dS~2mui j
2 1lukk

2 !, ~8!
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where ui j is the strain tensor,m and l are the two-
dimensional~2D! Lamécoefficients, and a bending energy

Hb5
1

2E dS~kH212kGK !, ~9!

wherek is the bending rigidity,kG the Gaussian rigidity,H
andK the mean and Gaussian curvatures, respectively.~If R1
and R2 are the principal radii of curvature,H51/R111/R2
and K51/R1R2 @5#.! For a closed surface with fixed topo
ogy the Gaussian curvature integrates to a constant~provided
thatkG is constant! and will henceforth be dropped, as it wi
have no influence on the shape. Instead of the Lame´ coeffi-
cients we will use the 2D Young’s modulusY and the Pois-
son ration, which are given by

Y5
4m~m1l!

2m1l
, n5

l

2m1l
. ~10!

Taking the variation ofH with respect to coordinates param
etrizing the surface leads to the Foppl-von Ka´rmán equations
which are highly nonlinear and whose solution even
simple geometries is very difficult@5#.

The energy of disclinations on flexible crystalline mem
branes was studied by Seung and Nelson in Ref.@13#. As
discussed in the Introduction, for a thin flat plate of fini
radiusR with an isolated fivefold disclination at the cente
the energy grows quadratically with the radius,Eflat
.AYR2, where A'p/288 is a numerical constant. If th
disclination is allowed to buckle out of the plane this ener
is reduced, and grows logarithmically for largeR with a co-
efficient proportional tok. In the inextensional limitY→`
the problem simplifies considerably and the energy
Ebuckled.Bk ln(R/a), where B'p/3 and a the lattice con-
stant. Thus, for small plates the flat solution is lower in e
ergy, whereas for large plates the buckled solution wins.
instability separating these two regimes occurs whenEflat
'Ebuckled or YR2/k'B/A. A detailed calculation in Ref.
@13# found the transition at a critical value ofYR2/k'154.

The spherical shapes of icosahedral symmetry we are
terested in here can approximately be thought of as be
composed of 12 disclinations, and should therefore unde
a similar transition from flat to buckled. Because the surfa
of the sphere is already curved, and hence breaks the
down symmetry that was present for a thin plate, it is n
clear that a sharp instability survives in this case. Howev
even if this is the case, we might still expect to see remna
of the transition in the form of a sharp if not singular cros
over. We construct below simple estimates of the energ
and transitions involved.

The total energy of the closed shell in the vicinity of th
transition is'12 times the energy of a disclination~with
radius approximately equal to the radius of the sphere!, plus
contributions from the background curvature of a sphe
given approximately by 8pk14pkG . In the inextensional
limit the short distance cutoff in the buckled disclination e
ergy was provided by the lattice constant. For finiteY the
cutoff is determined instead by a balance of strain and be
ing. We may in this case approximate the buckled discli
0-4
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VIRUS SHAPES AND BUCKLING TRANSITIONS IN . . . PHYSICAL REVIEW E68, 051910 ~2003!
tion by a flat inner regionr ,Rb with energyAYRb
2 and an

outer buckled regionr .Rb with energyBk ln(R/Rb). Mini-
mizing the sum with respect toRb givesYRb

2/k5B/2A, and

E.kB@ 1
2 1 ln(R/Rb)#.

Because the disclination energy is independent of the t
dimensional Poisson ratio and the Gaussian rigidity dr
out, the solution depends only on a single dimensionless
rameter,g5YR2/k, which we term the Foppl-von Ka´rmán
number. Note that if the 2D elastic theory derives from a t
shell of finite thicknessd built from a 3D isotropic elastic
medium, we haveg512(12n3

2)(R/d)2, where n3 is the
three-dimensional Poisson ratio, a result independent of
3D Young’s modulusY3 @5#. In summary, we then expect th
energy of the closed shell with 12 disclinations to appro
mately be

E

k
.H 6Bg/gb1D, g,gb

6B@11 ln~g/gb!#1D, g.gb ,
~11!

wheregb5YRb
2/k. The background curvature gives a co

stant contributionD'4p(21kG /k), leading as well to a
small shift in the disclination energies and hence inA andB.
For a perfect sphere, e.g., 12A'0.604p/36 @15#.

As the disclinations become more sharply buckled
whole structure will become more faceted. This leads to
formation of ridges connecting the vertices of the icosa
dron. The energy of similar ridges has been studied rece
@16,17#, uncovering some remarkable scaling relations.
the ridges become sharper upon increasingg, the energy will
increase asEridge/k.1.24a7/3(YL2/k)1/6, where a is the
angle in radians andL is the length of the ridge. In this
regime the shape is very close to an icosahedron with s
facets, witha'0.365 andL'1.23R, and a total of 30 ridges
In the limit of very largeg5YR2/k the energy should there
fore crossover to

E/k.Cg1/61const, g→`, ~12!

whereC'3.8.
To check these arguments and to calculate more pro

ties of the shells we now present numerical calculations.

B. Numerical results

For numerical calculations it is useful to consider d
cretized versions of Eqs.~8! and ~9! @13#:

Hs5
e

2 (̂
i j &

~ ur i2r j u2a!2 ~13!

and

Hb5
k̃

2 (̂
IJ&

~ n̂I2n̂J!
2. ~14!

Here ^ i j & denote pairs of nearest-neighbor vertices~which
we identify with the centers of the capsomers of a viru!,
with positions r i , and ^IJ& pairs of nearest-neighbo
plaquettes of a triangulated surface, with unit normalsn̂I . In
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the continuum limit this model becomes equivalent to E
~8! and ~9! with parameters@13#

Y5
2

A3
e, n5

1

3
, ~15!

k5
A3

2
k̃, kG52

4

3
k. ~16!

The relationkG524k/3 was calculated by comparing th
bending energy of a triangulated cylinder and sphere with
corresponding continuum expressions, and differs from
one used in Ref.@13#. Closed triangular surfaces of icosah
dral symmetry are constructed for non-negative integ
(h,k) according to the geometric principles of Caspar a
Klug @7#, and the minimum energy configuration is foun
numerically using a conjugate gradient method for differe
values ofk̃. As discussed in the Introduction, the intege
(h,k) denote the number of steps along the two lattice v
tors between two neighboring disclinations of the structu
Figure 5 shows some examples of the resulting sha
Shapes of varying size with ‘‘T numbers’’ as large asT
5h21hk1k2'1500 are studied. Below we calculate som
properties of the shells to characterize the shapes quan
tively.

1. Energy

We first plot the total energy as a function of the Fop
von Kármán numberg in Fig. 6. Similar to results for an
isolated disclination in a disk with free boundary conditio
@13#, the energy crosses over from a ‘‘flat’’ regime dominat
by stretching energy to a ‘‘buckled’’ regime dominated b
bending energies. Fitting the functional form, Eq.~11!, gives
A'0.005, B'1.30, gb'130, which compares quite we

10
0

10
2

10
4

10
6

10
8

γ = Y R
2
/κ

10
1

10
2

E
/κ

γb

FIG. 6. Total energy. Dotted and dashed lines are fits to E
~11! and ~12!, respectively. The arrow indicates the value ofgb

obtained from the fit.
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LIDMAR, MIRNY, AND NELSON PHYSICAL REVIEW E 68, 051910 ~2003!
with the estimates above. For largeg*107 a crossover to the
form given by Eq.~12! ~indicated by the dashed line in th
figure! occurs.

2. Aspherity

As a measure of the deviation from a perfectly spheri
shape centered on the origin we calculate the mean-squ
aspherity, defined by

^DR2&

^R&2
5

1

N (
i 51

N
~Ri2^R&!2

^R&2
, ~17!

where Ri is the radial distance of vertexi and ^R& is the
mean radius,

^R&5
1

N (
i 51

N

Ri . ~18!

The result, which is displayed in Fig. 7, shows a rather sh
but nonsingular crossover from spherical shape to facete
roughly g5YR2/k'150. The second increase arou
YR2/k'107 coincides roughly with the sharpening of th
ridges, where the asymptotic scaling in Eq.~12! sets in. Note
that the log-linear plot of Fig. 7 extends the range ofg in Fig.
4 by six orders of magnitude.

3. Icosahedral spherical harmonics

We first expand the radial density of points on the surfa
in spherical harmonics,

R~u,f!5(
l ,m

QlmYlm~u,f!, ~19!

where the densityR(u,f) is defined by

10
0

10
2

10
4

10
6

10
8

10
10

YR
2
/κ

0

0.0005

0.001

0.0015

0.002

0.0025
<

∆R
2 >

/R
2

T=625
T=729
T=1089

FIG. 7. Mean-squared aspherity@see Eq.~17!# as a function of
g5YR2/k for various ‘‘triangulation numbers’’T5h21hk1k2.
Data from shapes of three different sizes collapse onto a si
universal curve, indicating that the continuum limit has be
reached for these sizes.
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R~u,f!5(
j

Rjd~f2f j !d~cosu2cosu j !, ~20!

and (Rj ,u j ,f j ) represents the polar coordinates of vertexj.
From the coefficientsQlm , we form the rotation-invariant
combinations

Ql
25

4p

2l 11 (
m52 l

l

uQlmu2. ~21!

For a shape of icosahedral symmetryQl ’s are nonzero only
for l 50,6,10, . . . @23#. We plot, in Fig. 8, Q10/Q0 vs
Q6 /Q0, which for large shells should fall on a univers
curve parametrized byYR2/k. Note thatany point in the
(Q6 /Q0 ,Q10/Q0) plane would be consistent with an icos
hedral symmetry. Continuum elastic theory, however, p
dicts auniversalset of functionsQl(g) parametrized only by
the Foppl-von Ka´rmán number. The buckling transition oc
curs between the points labeled 2–4 in Fig. 8, while
crossover to the ridge scaling for very largeg happens be-
tween points 4–6.

4. Curvature

The curvatureC across the midpoints of the ridges co
necting the vertices of the icosahedra is plotted in Fig. 9.
g5YR2/k increases through the transition the ridges
sharper and the shape becomes more faceted. A pe
sphere would haveC51/R. However, as seen in Fig. 9,CR
saturates to a slightly smaller value,.0.7, for very smallg,
implying that the shape is not perfectly spherical below
buckling transition. In fact, there is a weak tendency towa
a dodecahedral shape~which is the dual to the icosahedron!.
The effect is hardly visible~cf. Fig. 7!, however. The data for
large shells are well described by a scaling form

le

0.01 0.02 0.03 0.04 0.05
Q6/Q0

0.002

0.004

0.006

0.008

Q
10

/Q
0

1

2

3

4

5

6

FIG. 8. Combination of spherical harmonics~see text!, which
fall on a universal curve for large enough shells. Points for trian
lations defined by (h,0),h55,6, . . . ,25 wereused to construct the
solid curve. Forh,5 deviations due to discreteness become la
and those points have been omitted for clarity. Points labeled
correspond tog'0.5,30,1000,15 000,83106, and 2.53108, respec-
tively.
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VIRUS SHAPES AND BUCKLING TRANSITIONS IN . . . PHYSICAL REVIEW E68, 051910 ~2003!
C5R21F~YR2/k!, ~22!

depending on the single parameterg. In the limit of large
argumentsg→`, we find F(g)→g1/6, consistent with the
scaling arguments of Lobkovskyet al. @16,17#. Note, how-
ever, thatg’s well in excess of 106 are required before on
begins to see this asymptotic result of ‘‘ridge scaling.’’

III. DISCUSSION

We have analyzed a model, based on the~highly nonlin-
ear! physics of thin elastic shells, which may be suitable
describing the shapes of large viruses and of large ves
with crystalline order in the lipids. Application of our resul
to vesicles@19,20# seems straightforward, once sufficient
precise freeze fracture or confocal microscope images
come available. Figure 10 illustrates two highly facet
shapes we found for the large Foppl-von Ka´rmán numbers or
‘‘vK’s’’ which might be relevant to the experiments of Re
@20#. One complication neglected here concerns poss
phase separation of the binary lipid mixtures studied
Dubois et al. in the vicinity of the 12 disclinations@20#. It
would be interesting to investigate this effect, although
modest enrichment of one lipid species near a disclina
could be incorporated into a renormalized core energy.
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FIG. 9. Curvature at the midpoints of the ridges. The poi
labeled 1–6 are for the same values ofg as in Fig. 8. The dashed
line shows the asymptotic scaling behavior;g1/6.

FIG. 10. Two shapes for the large Foppl-von Ka´rmán numbers
g515 600 and 83106 ~points 4 and 5 in Figs. 8 and 9!, illustrating
the sharpening of the ridges in the ridge scaling regime.
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discussed in Sec. II B, vK’s in excess of 106 are required to
see clearly the interesting scaling predictions of Re
@16,17#. In the remainder of this section, we comment on t
relevance of our work to spherical viruses@1,3,7,9#, where
the vK’s are of the order of a few thousand or less.

Reference@3# compiles cryroelectron micrographs an
other data on'30 different viruses, arranged in order o
increasing size. These images highlight the trend that sm
viruses are round and larger viruses are more faceted.
view faceted viruses as the result of 12 simultaneous bu
ling transitions, centered on 12 disclinations, similar to t
buckling of anisolateddisclination centered on a disk wit
open boundary conditions@13#. The spherical packing of the
protein capsomers in viruses not only forces in 12 discli
tions ~which we assume reside at the vertices of an icosa
dron! @7#, but also breaks the up/down symmetry of a di
with respect to the direction of buckling. Hence, we exp
~and find numerically! that the sharp buckling transition wit
increasing size in Ref.@13# is smeared out. As shown in Fig
11 for bacteriophage HK97~with 72 capsomers!, good one
parameter fits in real space to the full three-dimensio
shape of spherical viruses are possible. Our best fit
Foppl-von Kármán number of this mature form of HK97 is
g5YR2/k51480, from which we can extract the ratio of th
Young’s modulusY to the bending rigidityk, given that the
virus diameter is 2R560 nm @3#.

The precursor capsid or ‘‘prohead’’ of HK97 is rather
spherical, in contrast to the larger, more faceted mature
fectious virus shown in Fig. 11@27#. It seems likely that this
virus particle undergoes a buckling transition as it pas
from the prohead to its mature infectious form. Indeed,
prohead shell is wrinkled or corrugated relative to the mat
form @27#. It seems reasonable to regard this transformat
as a change in the effective thicknessd of the viral shell:d8
of the prohead goes tod,d8 in the mature form. As dis-
cussed in Sec. II A,g512(12n3

2)(R/d)2 if we approximate
the shell by a uniform isotropic elastic medium with Poiss
ratio n3 @5#. Since R increasesfrom 52 nm→60 nm asd
decreases, it is plausible thatg;(R/d)2 rises and that the
transformation from prohead→head is accompanied by
buckling transition.

Figure 12 shows a similar fit to the yeast L-A virus, whic
yields g5YR2/k5547. The diameter of the yeast virus
2R543 nm, which leads to the conclusion that@Y/k#yeast
51.24 nm22. Note that@Y/k#HK9751.64 nm22, consistent
with the arguments given in the Introduction that spheri
viruses have roughly similar elastic constants.

Our models for virus shells are based on two import
assumptions. The first is the neglect of a spontaneous cu
ture term@26# in bending energies such as Eq.~9!. Such a
term might be significant if the viral building blocks had
pronounced conical shape similar to, say, surfactant m
ecules in a micelle@26,28# or laboratory cork stoppers. Sev
eral lines of evidence suggest that neglect of this term m
be justified. Although certain virus scaffolding protein
~which can act as templates for early phases of construct!
do have a conical shape, these are discarded in the ma
icosahedral viruses of interest to us here@1#. It is hard to see

s
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FIG. 11. Real space fit to a virus structure. The curve shows the root-mean-square deviation from the experimental virus
bacteriophage HK97~full virus and cross section shown in the lower part of the figure! and the theoretically calculated shape. The bes
occurs at the minimum forg'1480 and the corresponding shape is depicted in the inset. Shading indicates the distance of the shell
center.
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a strong mechanism for precisely defined hinge angles
very large viruses composed of many capsomers@29,30#. In
vitro assembly experiments on the polyoma virus do prod
spherical aggregates with 12, 24, and 72 pentameric u
depending on conditions ofpH, calcium concentration, etc
@31#, which could be accounted for by a spontaneous cur
ture term. Although we neglect spontaneous curvature h
it is certainly possible that the physics of small viruses~or
the scaffolding proteins themselves! are influenced by such
05191
in

e
its

a-
e,

an energy, as has been explored by Bruinsma, Rudnick,
Gelbart@32#.

In general our work is more likely to be applicable
large viruses, for which simple continuum models can
justified. Icosahedral viruses are usually composed of a c
bination of fivefold and sixfold symmetric packing unit
with the 12 fivefold units centered on the vertices of
icosahedron~the polyoma virus SV40@3# with its 72 identi-
cal pentamers is an exception!. Because the strain energie
0-8
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FIG. 12. Real space fit to yeast virus L-A with inset and actual virus as described in Fig. 11. The best fit occurs forg5547.
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which lead to buckling extend far from the disclinatio
which produce them@13#, we would expect our result
for large viruses to be insensitive to differences in the sha
of packing elements. Special packing elements at the
fivefold sites could be incorporated into a disclination co
energy.

A second key assumption is our neglect of the osmo
pressure due to the confined DNA or RNA package of
virus @4#. Here we can appeal to an experiment. Earnsh
and Harrison@33# have compared the structure of pha
lambda~P22! with its full complement of DNA to the struc
ture of lambda mutants containing only 78% of the nat
05191
es
2

c
e
w

DNA. Although changes in the details of DNA packing ca
be detected, the protein shell itself is unchanged. Thus,
either to DNA condensation or an exceptionally strong sh
the osmotic pressure of the DNA is insufficient to change
shape. Of course, the nucleic acid content of a virus co
nevertheless play an important role in shell assembly@34#.
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